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Dispersal of butterflies in a New Guinea rainforest:
using mark–recapture methods in a large,
homogeneous habitat
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Abstract. 1. In an intensive mark-release-recapture study of all butterfly species in
a tropical rainforest understory, 5903 individuals from 90 butterfly species (from the
estimated total of 104 ± 9 species present in understory habitat) were marked, and
1308 recaptured at least once.

2. The study proved that mark-recapture methods are feasible in tropical rainforests,
but also showed its limitations, as after 232 person-days of sampling we could only
characterise dispersal for one-third of the species present.

3. The mean dispersal distance was 184 ± 46.1 m per species, while for six of the
14 species studied >1% of individuals were estimated to disperse 1 km or more. These
parameters are, however, strongly dependent on the size and spatial configuration of
the study plots, particularly in large homogeneous habitats. A new method proposed
here to correct this bias revised the mean distance between two captures from 135 ±
33.6 to 325 ± 87.0 m per species.

4. These results, in combination with data from large permanent rainforest plots,
suggest that most woody plant species in tropical forests are sufficiently abundant to
serve as host plant species even to monophagous Lepidoptera species.

Key words. Lepidoptera, lowland rainforest, mark–release–recapture, Melanesia,
Papilionoidea.

Introduction

Mark–release–recapture (MRR) is a well-established method
for the study of animal dispersal, as well as for population
size and dynamics (Lebreton et al., 1992; Hanski et al., 2000;
Hagler & Jackson, 2001). First used for the study of fishes
and waterfowl (Petersen, 1894; Dahl, 1918; Lincoln, 1930), it
continues to be used mostly for the study of vertebrate species
(Schaub et al., 2001; Trolle & Kery, 2003; Calambokidis &
Barlow, 2004). The only other group where MRR techniques
have been widely used is insect, mostly dragonflies (Beirinckx
et al., 2006) and butterflies (Dowdeswell et al., 1949; Ehrlich,
1965; Ehrlich et al., 1975; Hanski et al., 1994) where they
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have led to a better understanding of the structure of butterfly
metapopulations, including the frequency and distance of their
dispersal (Baguette, 2003; Zimmermann et al., 2011a). MRR
is also an important tool for butterfly conservation, as it is
used to estimate population size and mortality of endangered
butterfly species (Nowicki et al., 2005; Vlasanek et al., 2009).

There is a marked contrast between the frequent use of
MRR techniques in temperate zone ecosystems, particularly
meadows and other open habitats (Bonebrake et al., 2010),
and the near absence of such studies of tropical, particularly
rainforest, habitats. This bias, caused by technical difficulties
faced by MRR studies in tropical rainforests, is unfortunately
responsible for the lack of data on the dispersal and demog-
raphy of butterfly, as well as other insect, species in tropical
forests. This in turn seriously hinders our understanding
of plant–insect interactions in highly diverse rainforest
ecosystems. In particular, it has been suggested that many
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plant species are too rare in tropical forests for them to be
used by specialised herbivores (Dixon et al., 1987). Such a
hypothesis cannot be tested using plant density only, as we
also need to quantify dispersal ability of their herbivores.

One of the first tropical MRR studies focused on the
population structure and dispersal of Heliconius butterflies
(Ehrlich & Gilbert, 1973; Cook et al., 1976; Ramos & Freitas,
1999; de-Andrade & Freitas, 2005), followed by population
structure studies by Francini et al. (2005) and Beirao et al.
(2012). Several MRR studies evaluated the impacts of habitat
fragmentation (Uehara-Prado et al., 2005; Benedick et al.,
2006; Marin et al., 2009) or selective logging (Lewis, 2001) on
butterfly diversity. All these studies except those focused on
population structure used fruit traps (Corbet, 1942) to capture
butterflies. Some of them, such as Molleman et al. (2007),
achieved a large sample size, thus proving the feasibility
of MRR in tropical forests. However, while fruit traps are
useful for comparing communities from different habitats
(Pinheiro & Ortiz, 1992) or different forest strata (Tangah
et al., 2004), they limit sampling to a single guild, fruit eating
butterflies mostly from the family Nymphalidae. Further,
traps actively attract butterflies to baits, possibly biasing
their dispersal patterns (Fermon et al., 2003; Marini-Filho
& Martins, 2010) and distorting the relative abundance
of different species, as some are attracted or caught more
efficiently than others (Hughes et al., 1998). In contrast, hand
collecting by butterfly net is the standard method for MRR
studies in simple habitats, such as meadows, as it enables
sampling of all butterfly species equally (Pradel, 1996). In
theory, collecting by net should be equally suitable for the
understory butterfly species in tropical rainforests, but as far
as we are aware, it has not been used in this habitat. This is
probably because the low density of butterflies in understory
make large sampling effort necessary and because lower levels
of tropical forest are very tangled and it is tricky to chase
butterflies inside such habitat. There is thus a dichotomy
between MRR studies using butterfly nets in mostly temperate
zone grasslands and MRR studies using fruit traps mostly in
tropical forests.

The dispersal parameters obtained from MRR studies
depend both on the behaviour of studied species and the
size and spatial configuration of study plots (Schneider,
2003). Some studies monitor all locally available habitat
patches suitable for the studied species so that their dispersal
parameters reflect real constraints of habitat distribution (Hill
et al., 1996; Konvicka et al., 2005) while in the studies
within large, homogeneous habitats, where the study plots
have to be arbitrarily delimited, the dispersal parameters
may reflect predominately the design of the study. In both
cases, differences in spatial configuration of study plots make
comparisons between studies difficult (Fric et al., 2010).

The present study: (i) tests the feasibility of MRR by
netting in tropical forests; (ii) measures dispersal ability of
all common understory butterfly species in a New Guinea
lowland rainforest; (iii) explores relationships between
dispersal ability and other ecological traits of species; and
(iv) develops a correction for dispersal parameters reflecting
spatial configuration of study plots, particularly important in
the study of large, homogeneous habitats.

Material and methods

Study system

This MRR study took place in 10 000 ha of primary tropical
rainforest in the Wanang Conservation Area (Madang Province,
Papua New Guinea; 5.23◦S 145.08◦E; altitude 100 m). The
study area consisted of four plots, 3.15–3.99 ha in size
(Table 1), situated 45–682 m from each other (Fig. 1). Each
plot was divided into 25 × 25 m grid marked by flagging tape
and mapped in ArcGIS 9.3 (©ESRI, Inc.). The plots were
representative of the vegetation and topography of the forest
except that we avoided steep slopes where we could not mark
and recapture butterflies efficiently.

Butterfly recording

Two teams of three people (rarely four or two people) each
worked in the field daily from 09.00 to 16.00 hours (butterfly
activity was minimal outside of these times), except when
it was raining, from 25 April to 26 June 2009. Each team
surveyed (zigzagged, no trails or paths were available) two
plots every day. The pairs of plots were alternating daily
between teams to limit collector effects. The collectors always
surveyed the entire plot and tried to record and capture all the
butterflies found there. They were marked, their sex, habitat
(gap or understory) and position within the plot recorded, then
released. Altogether, 232 person-days were spent in the field
(Table 1).

Statistical analyses

The dispersal distance (D) was measured as the total dis-
tance travelled between individual captures for each butterfly
captured at least twice. Butterfly species with D values avail-
able for at least three individuals were characterised by the
mean dispersal distance (Davg). Regression-based models were
used to estimate the probability density (d ) of a butterfly dis-
persing a given distance D (Baguette, 2003; Fric & Konvicka,
2007): inverse power function (IPF), d = c × Dz and negative
exponential function (NEF), d = c × ezD. The constants c and
z quantify species’ dispersal over shorter and longer distances
respectively. Further, recapture rates (R) were estimated as the
proportion of recaptures to captures for butterfly species with
≥15 captures.

The mean dispersal distance between two captures was
corrected for the proportion of dispersal events that could
not be recorded because of the size and spatial configuration
of the study plots. One million points were generated using
random coordinates for a rectangle comprising four study plots.
The points inside plots, representing butterfly captures (almost
100 000 points), were given random angle (direction) and
distance from 20 to 1680 m (i.e. longest distance between any
two points from the four sampling plots) in 20 m increments
(i.e. 20, 40, 60 m, etc.). The random direction and distance
simulated a dispersal event. The proportion of points that had
their the new location within a sampling plot was used as an
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Table 1. Description of study plots and mark-recapture sampling effort.

Plot Area (ha) Gaps (%) No. of gaps No. of visits No. of person-visits No. of captures No. of species

A 3.15 6.5 13 36 112 2296 61
B 3.99 2.1 7 43 132 2428 54
C 3.99 3.9 11 42 113 1203 53
D 3.45 4.6 6 38 109 1719 51
X – – – – – 905 54
Sum 14.58 – 37 159 466 8551 90

No. of person-visits denotes the total number of times a particular person visits on a particular day in each plot. A, B, C and D are individual plots
(see Fig. 1); X denotes captures outside the plots. No. of visits indicates the number of times we worked in each plot (for variable lengths of time).

Fig. 1. Map of the study plots. Dashed line is the Digitam stream.
The number of individuals moving from one plot to another (summed
across all species) is shown by arrows. The entire area comprised
continuous lowland primary forest.

estimate of the probability (PC) that dispersal at a particular
distance will be recorded in four sampling plots (Fig. 2).
The mean dispersal distance between two captures (Dobs) was
calculated for each species, using observed dispersal distances
(D) rounded up to 20, 40, 60 m, etc., and then corrected for the
effect of plot size and position. The corrected mean dispersal
distance (Dcor) was calculated as the sum of D/PC values
for each dispersal distance from 20 m to maximal dispersal
distance of each species.

The Davg, Dcor, z and R parameters were correlated
with other characteristics of butterfly species, including gap
preference, succession preference, altitudinal and geographic
range, and body size. The gap preference (Gap) was measured

Fig. 2. Recapture probability of a butterfly captured within the four
plots and flying a given distance in a random direction. Note slight
peaks at about 900 and 1300 m.

on a scale 0–1 of frequency of being captured in a gap
(as opposed to forest understory). Succession preference
(Succession) was estimated as the species score on the
constrained axis in an ordination analysis (CCA) of butterfly
distribution on a gradient from secondary (lower CCA
values) to primary (higher CCA values) forest (from Sam,
2009). Altitudinal range (Altitude) was the difference between
maximum and minimum altitude recorded for New Guinea.
Geographical range (Geography) was classified as either
endemic for New Guinea, or extending to the Australasian
tropics (there were no species with even wider distributions).
Body size (Size) was measured as the average wingspan for
males and females. The last three variables were obtained from
Parsons (1999).

The program EstimateS 8.2.0 (Colwell, 2006) was used to
calculate rarefaction curves (Colwell et al., 2004) and Chao’s
species richness (Chao, 1984).

Results

A total of 5903 individual butterflies were marked from
90 species, including 1308 individuals, which were then
recaptured at least once. The total number of recaptures
was 2648 so that the total number of butterfly captures
was 8551. The most abundant butterfly was Danis danis
with 5916 captures, i.e. approximately two-thirds of the
total (Supplementary Table S1). The second most frequently
captured butterfly ‘species’, Taenaris sp., was in fact a mix
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Fig. 3. Abundance distribution of butterfly species, as reflected by the
number of captures, in our study plots. Only 29 species were caught at
least 15 times (black diamonds). Three of the most captured butterflies
Danis danis, Taenaris sp. and Parthenos aspila had 5916, 537 and 379
captures respectively.

of two species (T. catops and T. myops). They could not be
distinguished by external morphology and are analysed here as
a single unit. In contrast, 61 species were captured fewer than
15 times each (Fig. 3, Supplementary Table S2).

The probability density of dispersal (d ) over a particular
distance (D , from 0.2 to 10.0 km) was estimated for 14
species. The NEF and IPF regressions were significant for
respectively 12 and 11 species (Supplementary Table S3). The
NEF provided a better fit for nine species while IPF fitted better
for four species. We have therefore used NEF for the overall
analysis and interspecific comparisons of dispersal parameters.
Butterfly species were ranked from the most sedentary species
(Parthenos aspila) to species with the highest dispersal
(Papilio ambrax , Fig. 4, Supplementary Table S3). There were
significant differences in dispersal, based on z values from

NEF, between sexes in the four species from five that could
be tested: Danis danis (t1,22 = 4.389, P < 0.001), Taenaris sp.
(t1,23 =−2.672, P < 0.01), Tellervo nedusia (t1,7 =−5.952,
P < 0.001), Parthenos aspila (t1,5 = 1.064, P > 0.05) and
Cethosia cydippe (t1,4 = −4.585, P < 0.01). In all cases except
Danis danis , females are more mobile. Both primary forest
habitats, gaps and understory, included relatively sedentary as
well as mobile species. For example, based on NEF results,
in the understory, Danis danis was extremely sedentary as
only 3% of individuals were likely to disperse over 500 m,
while in Taenaris sp. it was 29% of individuals. In gaps also,
individuals of Parthenos aspila were confined mostly to a
single gap while for Papilio ambrax we documented dispersal
over 1 km.

The recapture rate ranged from 0 to 0.5 (mean 0.15 ± 0.02)
in the 29 species with ≥15 captures (Supplementary Table
S2). The mean dispersal distance was Davg = 184 ± 46.1 m
for the 17 species with at least three D values available,
including extreme values of 648 and 649 m respectively for
Neptis nausicaa and Papilio ambrax . Nevertheless, Davg is
underestimated because position of four plots underestimated
long movements. The probability that recorded flight of a given
distance initiated in one of four plots decreased rapidly from
almost 90% for 20 m flight to 5% for 240 m flight, followed by
increase to 10% for 380 m, drop to 0.01% at 720 m, and finally
by two minor peaks of 1.1% and 1.4% at 940 and 1300 m,
respectively (Fig. 2). This probability distribution was used to
correct the observed mean distance between two captures from
Dobs = 135 ± 33.6 m (n = 17 species) to Dcor = 326 ± 87.0 m
(Supplementary Table S3).

The relationships between measures of dispersal and other
species characteristics are summarised in Table 2. NEF
parameter z (slope) was positively correlated with mean
dispersal distance Davg and Dcor (Fig. 5a) but not with

Fig. 4. Probability of dispersal with distance for individual butterfly species. The fitted negative exponential function shows decreasing dispersal
ability from Papilio ambrax to Parthenos aspila . See Supplementary Table S3 for parameters of individual functions.
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Table 2. Relationships of recapture rate (R), mean dispersal distance
(Davg), adjusted mean dispersal distance between two captures
(Dcor) and NEF parameter (z ) with gap and succession preference,
geographical and altitudinal range and body size.

R Davg Dcor z (NEF) Gap

R n 17 17 12
r −0.07 −0.22 0.39
P 0.80 0.41 0.21

Davg n 12
r 0.75
P 0.005**

Dcor n 12
r 0.86
P < 0.001***

Gap n 29 17 17 12
r −0.16 −0.04 −0.06 0.41
P 0.40 0.86 0.82 0.18

Succession n 28 17 17 12 28
r 0.41 −0.26 −0.23 0.08 −0.46
P 0.03* 0.30 0.37 0.80 0.01*

Geography n 16, 13 10, 7 10, 7 6, 6 16, 13
t 0.78 −0.90 −1.19 −0.89 −0.12
P 0.44 0.38 0.25 0.39 0.91

Altitude n 29 17 17 12
r 0.02 −0.1 −0.02 0.06
P 0.90 0.68 0.94 0.85

Size n 29 17 17 12
r 0.11 0.28 0.47 0.17
P 0.56 0.27 0.06 0.58

*P < 0.05; **P < 0.01; ***P < 0.001. P values from t-test for geo-
graphical range, Pearson correlation for the rest.

recapture rate R. There was also no correlation between R
and Davg (Dcor).

Higher recapture rates, R, were found for species in the
understory as well as in those strongly preferring gaps
(Fig. 5b). Butterfly species that preferred secondary forests had
significantly lower recapture rates than the species preferring
primary forests (Fig. 6a). Additionally, those that preferred
early succession vegetation also preferred gaps within primary
forest (Fig. 6b). The gap preference ranged from 0 to 0.81
among butterfly species. Only Lamprolenis nitida , Danis danis ,
Tellervo nedusia , Taenaris dimona and Taenaris sp. preferred
forest understory, while 24 species exhibited various degrees
of preference for gaps (Fig. 7, Supplementary Table S2).

There was no difference in R, Davg (Dcor), z and gap pref-
erence between butterfly species endemic to New Guinea and
those with wider distribution (Table 2). Likewise, these three
parameters were not correlated with the species’ altitudinal
range or body size.

The number of species living in the forest understory in
our study area was estimated at 104 ± 9 species, based on
the species accumulation curve (Fig. 8). The number of well
sampled species, defined here as those with ≥15 captures or
≥5 recaptures, increased slowly with sampling effort (Fig. 9).
Two hundred and thirty two person-days of sampling were
needed to obtain such data for 29 and 17 butterfly species,
respectively. Based on the amount of daily captures and

Fig. 5. (a) Correlation between mean dispersal distance Davg and the
slope of regression-based model z (NEF); (b) Relationship between
recapture rate (R) and gap preference (peaking for understory species
and species strongly preferring gaps; 4.3% of our study area were gaps,
which is displayed as dashed line). This model performed significantly
better than a second-order polynom in a test of deviance (F 25 = 25.43,
P < 0.001) and had a lower AIC (�AIC = 18.35). NEF, negative
exponential function.

recaptures for the 90 species sampled, 500 person-days would
result in 20 species with ≥5 recaptures and 40 species with
≥15 captures, i.e. respectively 19% and 38% of the total.

Discussion

In this study the feasibility of the standard MRR protocol,
used widely in temperate zone grasslands (Baguette &
Neve, 1994; Hanski et al., 1994; Kuussaari et al., 1996;
Zimmermann et al., 2011b; Konvicka et al., 2012) was tested
on butterfly species from the understory of a lowland tropical
rainforest in Papua New Guinea. With the help of numerous
field assistants, 90 species were sampled from the estimated
total pool of 104 ± 9 understory species in an MRR study. A
comprehensive transect-based study in the same forest area,
10 km from our study plots, recorded a total of 176 butterfly
species (of which 72 belonged to the family Nymphalidae,
possible fruit feeders), including 100 species (46 species of
Nymphalidae) from primary forest transects similar to this
survey (Sam, 2009). It suggests that the present study captured
most of the local species richness, whereas studies relying
on fruit-baited traps are limited to fruit feeders, representing
approximately half of all primary forest species.
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Fig. 6. (a) Correlation between the succession optimum of species and
its recapture rate (recapture rate increased from secondary to primary
forest); (b) Correlation between the succession optimum and gap
preference (species preferring gaps to understory prefer also secondary
to primary forest).

Fig. 7. Gap preference of primary forest butterfly species. The
proportion of captures in gaps was compared to the expected proportion
of 4.3%, corresponding to the area occupied by gaps in our study plots.
The values <1 indicate preference for forest understory, while higher
values indicate preference for gaps.

It should be noted that this study site might have been
highly suitable for MRR methods as it has a higher butterfly
density than some other lowland rainforests, including Barro
Colorado Island in Panama and Khao Chong in Thailand
(Basset et al., 2011). The forest understory vegetation was also
sparse, permitting relatively free movement. Further, the study
relied on numerous paraecologists (Basset et al., 2004) who
may not be readily available to other tropical research teams.

Fig. 8. Species accumulation curve (with 95% confidence inter-
val) with increasing number of butterfly captures during the
mark–release–recapture study.

Fig. 9. The number of well sampled butterfly species (i.e. those
with ≥15 captures or ≥5 recaptures) with increasing sampling effort,
estimated from average captures and recaptures for one person-day
and the relative abundance of butterfly species in our captures. White
symbols denote our complete data set of 232 person-days.

This study has demonstrated the feasibility of using MRR
in rainforest understories as at least some dispersal data were
obtained for 29, i.e. 32% of all recorded species, which
represented 97% of all individuals. Further, there were three
species, which could be analysed in detail for population
size, survival and other demographic parameters (Vlasanek
& Novotny, unpublished). Even a considerable additional
sampling effort would add analysable data for only a small
number of new species. MRR thus remains feasible only for
the most abundant species, which, however, often represent a
large proportion of all individuals in the community. This is
not unusual as tropical insect communities are renowned for a
large number of rare species (Novotny & Basset, 2000), many
of them ‘tourists’ from other habitats. Other ecological studies
of insect communities are facing similar constraints. For
instance, Novotny et al. (2002) documented host specificity for
only 14–22% of folivorous species in New Guinea rainforest
communities, but they represented 87–93% of all individuals.

This study, which sampled both nectar and fruit feeding
species indiscriminately, found that approximately 50% of
species were fruit feeding Nymphalidae. This is not surprising
as fruit feeders are mostly concentrated in the understory
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(DeVries et al., 1997; Molleman et al., 2006) while nectar
feeders are mostly concentrated in the canopy (Schulze et al.,
2001).

Sam (2009) quantified habitat preferences of butterfly
species along a rainforest succession gradient from deforested
habitats, through secondary, to primary forests in our study
area. In the present study, butterfly distribution was examined
within primary forest, among gaps and shaded understory.
Gaps represented 4.3% of the forest area in our plots, a
share similar to other tropical forests (Brokaw, 1982; Lang
& Knight, 1983; Chandrashekara & Ramakrishnan, 1994;
Hubbell et al., 1999). As expected, early succession species
preferred gaps within the primary forest. More surprisingly,
the majority of all butterfly species in the primary forest
understory exhibited some degree of preference for gaps,
despite them representing only 4.3% of the entire area. This
illustrates the importance of gaps for butterfly species richness
in tropical forests (Spitzer et al., 1997; Hill et al., 2001) or
at least importance for observed butterfly diversity (butterfly
may visit gaps frequently but only for nectaring, basking, etc.
while its host plants may be in the understory).

All plot-based measurements of dispersal are biased by
default (Wilson & Thomas, 2002). Schneider (2003) found a
linear relationship between mean dispersal distance and size
of study area. The size, shape and position of plots have a
profound effect on the distribution of observable dispersal
distances, as illustrated by the presented results. The mean
dispersal distance between two captures rose almost 2.5 times
when corrected for sampling bias, but remains underestimated,
as our plot design could not easily measure dispersal distances
from 620 to 880 m and from 1020 to 1180 m, over which only
<1% dispersal events would have been recorded. Further,
we could not record any dispersal longer than 1680 m. These
results suggest that uncorrected comparisons of dispersal
parameters between studies may be highly problematic (Fric
et al., 2010). We suggest that the MRR studies in large
homogeneous habitats design their plots with reference to the
recapture probability function (Fig. 2). This function should
avoid zero probability of recapture for as wide a range of
dispersal distances as possible.

Butterfly dispersal data could be fitted comparably well with
different regression-based models, which give very different
results for the same data set (Hill et al., 1996; Baguette
et al., 2000; Baguette, 2003; Kuras et al., 2003; Konvicka
et al., 2005), as was the case here. IPF fitted better (and with
significant support) four species while NEF fitted better nine
species. One difference between two used regression-based
models is estimation of long distance movement probabilities.
For instance in Taenaris sp., 2% of individuals disperse
over 5 km distance based on IPF regression, but only eight
individuals per 100 000 do so according to the NEF model.
Although we do not have measurements for such long distance
dispersal, we consider NEF values unlikely and IPF a better
choice for such analyses.

The mean dispersal distance of 184 ± 46.1 m was similar
to values from other studies in selectively logged tropical
forests. With fruit-baited traps, Fermon et al. (2003) recorded
174 m and Lewis (2001) recorded that 88% of recaptured

individuals travelled 20–141 m, 9% 200–412 m and 3%
reached distances longer than 1 km. In areas with fragmented
forest, where dispersal distances are expected to be biased,
Marini-Filho and Martins (2010) recorded 369 m, but Marin
et al. (2009) recorded only 57 m. Single species studies
from South America recorded 232.3 and 136.7 m for males
and females of Actinote zikani (studied along 2.5 km long
road; Francini et al., 2005), 283.3 and 198.7 m for males
and females of Parides burchellanus (specialised species
living inside canopy closed river basin; Beirao et al., 2012),
270.6 and 236.3 m for males and females of Heliconius
erato (Ramos & Freitas, 1999) or 65.2 m for males of
Heliconius erato, again, and 84 m for males of Heliconius
ethilla (de-Andrade & Freitas, 2005). Rather surprisingly,
given the popularity of MRR techniques for the study of
temperate zone butterflies, there are very few MRR studies
from temperate forests (Freese et al., 2006; Konvicka et al.,
2008). Most temperate zone studies focus on grasslands
and other open habitats. Further, most of these studies
examine fragmented habitats and the butterfly metapopulations
colonizing them, rather than dispersal in a large continuous
habitat. The mean dispersal distance in these grasslands
varied from 322 m for Maniola jurtina and 272 m for
Lycaena virgaure (Schneider et al., 2003) through 253 m for
Parnassius mnemosyne (Valimaki & Itamies, 2003), 231 m
for Euphydryas aurinia (Zimmermann et al., 2011b), 170 m
for Brenthis ino (Zimmermann et al., 2005) to 85 m for
Proclossiana eunomia (Baguette & Neve, 1994) and 28 m
for males and 8 m of females of Plebejus argus (median;
Lewis et al., 1997). Most of the temperate MRR studies
focused on a single, often endangered, species, and therefore
possibly having atypical biology, rather than the entire butterfly
community.

The dispersal distances estimated here, even though they
undoubtedly underestimate the life-time dispersal distances
of butterflies, suggest that the presence of a single suitable
host plant individual per hectare should be sufficient for most
butterfly species to locate it. In the Center for Tropical Forest
Science’s (CTFS) network of 50 ha tropical forest plots, where
all stems with DBH >1 cm are mapped, a large proportion
of plant species had >1 individual plant per hectare: 65%
of species in Lambir (Malaysia), 65% in Pasoh (Malaysia),
55% in Korup (Cameroon) or 65% in Barro Colorado Island
(Panama) (data from http://www.ctfs.si.edu). Not all individual
plants from a particular host species represent a suitable
resource for herbivores all the time, though, because most
herbivorous insects require young leaves for feeding (Coley,
1983; Cizek, 2005). It is, however, probable that dispersal
ability does not limit most butterfly species from exploiting
most shrub and tree species in tropical rainforests as their
sole host plant species. Even rarer plant species may be
available, as suggested by the NEF estimate that in six of
14 species, at least 1% of individuals dispersed 1 km or
more.

Species from primary forest had a higher recapture rate
than those from early succession vegetation. This could be
a response to the transient nature of secondary forests, making
higher dispersal advantageous. However, secondary forests are
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a sufficiently long-living habitat compared to the generation
time of tropical insects (Leps et al., 2001) so it could also be
argued that primary forest butterfly species are under greater
selection pressure to disperse further than their secondary forest
counterparts because they need to search for their host plants in
more diverse vegetation. Hill et al. (2001) suggested that lower
recapture rates indicated better dispersal. No such correlation
was found between mean dispersal distance and recapture
rate, which may have been caused by differences in butterfly
mortality and behaviour, as, for instance, the canopy was not
accessible for sampling.

Fermon et al. (2003) observed that females were more
mobile in 10 of 13 species. Results from the temperate zone are
similar (e.g. Baguette & Neve, 1994; Kuussaari et al., 1996).
Males tend to be more sedentary around the most hospitable
mating sites while females have to search for a suitable location
for oviposition (Scott, 1975). Our results are similar, as three
species had females that were more mobile and only one
species had males that were more mobile. This issue deserves
further study on a larger number of rainforest species.

The geographical range of butterflies decreases along a
succession gradient from secondary to primary rainforest
(Spitzer et al., 1993, 1997; Hamer et al., 1997; Fermon et al.,
2000). This trend was not detected here, possibly because
this study was limited to species, which were sufficiently
common in primary forest. Additionally, there was no positive
relationship between body size and mean dispersal distance
(Sekar, 2012).

In conclusion, the study demonstrated the feasibility of
the MRR method for tropical communities of butterflies in
the forest understory but also showed that it requires large
sampling effort and, even then, remains limited to common
species. Further, it demonstrated that dispersal parameters are
highly dependent on the spatial configuration of study plots,
which has to be taken into account in comparisons between
studies. Finally, the data on butterfly dispersal obtained by
MRR suggest that most woody plant species in tropical
rainforests are probably sufficiently abundant to be host plants
even for specialised butterfly species.
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Table S1. Butterfly species caught in and around the study
plots. A, B, C, D–captures from inside the plot; A1, B1,
C1, D1 –within 25 m from the plot; A2, B2, C2, D2 –on paths
connecting different plots, farther than 25 m from any plot.
Taenaris sp. is a mixture of at least two species–T. catops and
T. myops .

Table S2. Butterfly species with ≥ 15 captures. Count of
total captures, marked and recaptured individuals. R, recap-
ture rate (recaptures/captures); Davg, mean dispersal distance
in metres; Dobs, mean dispersal distance between two cap-
tures in meters; Dcor, mean dispersal distance between two
captures adjusted for plots positions; Gap%, gap prefer-
ence (proportion of captures in gaps); CCA, distribution
optimum along succession gradient from secondary forests
(low CCA values) to primary forests (high CCA values);
Geo, geographical range (1, endemic for New Guinea and
associated islands; 2, also in Australian tropics); Altitude,
altitudinal range in PNG in metres; Size, wing span in
mm.

Table S3. Probability of an individual butterfly dispersing a
particular distance estimated for well-sampled butterfly species
from regression-based models (IPF and NEF) with c and z as
fitted parameters and coefficient of determination (R2). Values
in bold style show better fit of IPF or NEF. Probability (P ):
*** < 0.001 < ** < 0.01 < * < 0.05 < NS
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