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Abstract We still do not know how many insect species there are in tropical forests. The rate of species description
peaked a century ago. Unfortunately, taxonomy ceased to be fashionable before it had completed cataloguing
insect diversity. Molecular information combined with web-based data dissemination promises to shorten the
20 years it takes on average for insect specimens to be described as new species. Our inability to enumerate
tropical species has made estimates of their diversity popular. Plant-based estimates, multiplying the number
of plant species by the number of insect species effectively specialized to them, have been used for the past 150
years for global insect diversity estimates and recently also for the first local rainforest diversity estimate of
arthropods, at 25 000 species. Why are there so many insect species in tropical forests? Insect diversity may
be driven by latitudinal trends in vegetation. The near impossibility of conducting a complete census of
complex plant–insect food webs in tropical forests should focus our attention upon the most common species
and interactions. Recent studies of trees in Amazonia and herbivores in New Guinea suggest that such reduced
food webs may be surprisingly simple and, thus, amenable to study, while still including more than 50% of all
plant and insect individuals and their interactions. A pan-tropical network of plots, modelled on the existing
network of forest dynamics plots, and potentially utilizing the existing, but rather poorly used, network of
canopy cranes, could provide spatially resolved data on plant–insect food webs. The study of food web
dynamics requires experimental manipulation, which can range from exclusion or addition of single species to
ecosystem-wide manipulation of species composition and habitat fragmentation. Recent progress in molecular
taxonomy, proliferation of community phylogenies, improved food web census techniques and an increasing
focus on experiments promise an exciting time for tropical entomology.
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COUNTING SPECIES: TAXONOMIC
DIMENSIONS OF DIVERSITY

How many insect species coexist in a tropical forest? This may
be the most obvious question asked by an entomologist con-
fronted with tropical biodiversity. The extraordinary diversity
of insects has attracted entomologists to the tropics since the
early days of biological exploration (Bates 1863; Wallace
1869) and, to this day, tropical entomology remains both
blessed and burdened with the diversity of species it purports
to study. An insect specimen sampled in the tropics by Henry
Bates or Alfred Wallace likely belonged to a new species. The
rate of species description for many taxa, including Papua
New Guinean (PNG) butterflies, as an example of a well-

known taxon in a tropical region, peaked in the early 20th
century (Fig. 1, Gaston et al. 1995; Costello et al. 2012).
Unfortunately, taxonomy ceased to be fashionable science
soon afterwards, and well before it could have completed the
task of cataloguing the global diversity of tropical insects.

Presently, some of the largest sets of high-quality speci-
mens, often associated with ecological and molecular data, are
generated by quantitative ecological studies (Basset et al.
2007; Janzen & Hallwachs 2011; Kitching et al. 2011). For
instance, a comprehensive sampling of 18 focal taxa from a
rainforest in Panama produced 130 000 individuals from 6144
species, 62% and 24% of which were assigned to existing
genera and species, respectively, after 8 years of analysis by
over 100 taxonomists (Basset et al. 2012). On average, it takes
20 years for insect specimens to be formally described as new
species (Fontaine et al. 2012). Ecologists would welcome a
somewhat faster pace of taxonomic discovery. A combination*novotny@entu.cas.cz
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of species definition and recognition based on molecular infor-
mation, particularly DNA barcodes, with web-based dissemi-
nation of data and images promises a radical change in the
taxonomy of tropical insects in the near future (Miller 2007).
These technologies provide the opportunity to expedite formal
descriptions of new species (e.g. Butcher et al. 2012; Riedel
et al. 2013a,b) and also to provide interim taxonomic refer-
ence systems that can be used before formal names are avail-
able (Schindel & Miller 2010; Ratnasingham & Hebert 2013).

May (1988) noted that we do not know insect diversity even
on a local scale, in a ‘representative hectare’ of a tropical
forest. A quarter century later, Basset et al. (2012) published
the first comprehensive assessment of local arthropod diversity
in the tropics, estimated at approximately 25 000 arthropod
species within 6000 ha of a lowland rainforest in Panama.
Only 0.48 ha of the forest and 25% of the predicted species
were actually sampled. The plant-based extrapolation of
samples to the entire forest, based on the known number of
plant species in the forest multiplied by the estimated number
of unique (effectively specialized sensu May 1990) insect
species per plant species, performed best among a range of
extrapolation techniques, both for herbivorous and non-
herbivorous insect taxa.

Plant-based extrapolation methods also have a long tradition
of use in efforts to estimate regional and global diversity of
insects. Westwood (1833) multiplied the contemporaneous
estimate of 100 000 vascular plant species by four to six insect
species per plant, based on his experience from Britain, to
estimate the global diversity of insects at 400–600 000 species.
The same approach was applied 150 years later by Erwin
(1982) to 682 beetle species sampled by insecticidal fogging
from canopies of 10 Luehea seemannii trees in Panama and,
after corrections for host specificity, arthropod taxa other than
beetles, and non-canopy species, multiplied by the global esti-
mate of 50 000 tree species to suggest that there were 30
million insect species on the planet.

That paper (Erwin 1982) was especially important in being
the first to articulate a set of quantitative assumptions about

insect diversity in a sequence that could be discussed and
tested (Miller et al. 2002). Several studies re-examined indi-
vidual parameters of Erwin’s calculation, particularly host
specificity, and expanded insect data sets available for calcu-
lations (Stork 1988; Thomas 1990; Odegaard et al. 2000;
Novotny et al. 2002; Hamilton et al. 2010, 2011, 2013).
Global estimates of diversity have subsequently been reduced,
usually to below 10 million species, most recently to 6.1
million species (with a 90% confidence interval of 3.6–11.4
million species) (Hamilton et al. 2010, 2011). However, none
of these estimates is entirely satisfactory as they continue to
rely on limited data, mostly on folivorous herbivores from
either the Coleoptera or Lepidoptera sampled in a single rain-
forest community. Few local studies examine an entire insect
fauna associated with a particular tree species; Stork (1991)
and Basset and Arthington (1992) provide probably the most
detailed data for, respectively, tropical and subtropical tree
species. Recent discoveries of large rates of cryptic diversity
among parasitoids based on molecular data (Smith et al. 2008,
2012; Veijalainen et al. 2012) may require significant
increases in the estimates. Further, even classical taxonomy of
some diverse taxa, including Diptera, and guilds, such as soil
insects, remain poorly understood (Brown 2005; Wu et al.
2011).

A better estimate of overall diversity on regional and global
scales could be generated by scaling-up local food web data
separately for each guild of herbivores, parasitoids and preda-
tors. Individual guilds vary widely in their host specificity and
species richness, both in herbivores (Novotny et al. 2010) and
parasitoids (Lewis et al. 2002; Hrcek et al. 2013). Interest-
ingly, herbivore host specificity (measured as the ratio of spe-
cialists to generalist – see Fig. 2) appears to be negatively
correlated with species richness, at least among folivorous
guilds (Novotny et al. 2012). This means that the most spe-
cialized guilds – gallers, miners and cell suckers – are species-
poor, typically with less than 10 species on any particular plant
species. However, they accumulate species quickly with
increasing plant diversity from local to regional scales. The
relative species diversity of individual guilds therefore
depends on the spatial scale sampled, and hence on the diver-
sity of plants at that scale. Highly specialized guilds should be
more prominent in regional species pools than local commu-
nities. This prediction is difficult to test because the most
specialized guilds are small-bodied and, as such, are particu-
larly poorly known taxonomically (see Gaston 1991 for a
correlation between the probability of species description and
body size). For instance, we estimated that in the cell-sucking
guild, there may be at least 2775 typhlocybine leafhopper
species in PNG while, at the same time, there are only 40
species, or less than 0.5% of the total, formally described from
that region (Baje et al. 2013).

For parasitoids, taxonomic knowledge of species and
ecological knowledge of trophic interactions is even poorer
than for herbivores (Quicke 2012; Rodriguez et al. 2012;
Smith et al. 2012). For instance, only seven from 119 species
of hymenopteran parasitoids reared from caterpillars in
PNG (Hrcek et al. 2013) were already known taxonomically
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Fig. 1. Cumulative total of currently recognized subspecies and
species of butterflies from Papua New Guinea based on their date
of taxonomic description. Data from Tennent (2006a,b).
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(J Hrcek pers. comm. 2014). Molecular analysis of parasitoids
uncovers more cryptic diversity than in many other insect taxa,
including their herbivore hosts (Smith et al. 2008). Parasitoid
adults can be sampled relatively easily for taxonomic studies,
for instance using Malaise traps, but they lack the information
on their hosts. Rearing parasitoids is labour-intensive since it is
difficult to distinguish parasitized and healthy hosts and focus
only on the former. Recent progress in molecular detection of
parasitoids in their hosts (Hrcek et al. 2011; Jenkins et al.
2012) and hosts in their parasitoids (Rougerie et al. 2011) may
remedy this problem by combining sampling and taxonomic
analysis of adult parasitoids with molecular detection of their
hosts.

While global estimates of insect diversity may or may not be
seen as important (Miller et al. 2002; May 2010), the lack of
regional, if not global, data on the size and composition of
insect faunas is clearly a problem for contemporary tropical
entomology. Taxonomically, the field of insect community
ecology remains in a pre-Linnaean stage in the tropics, as each
research project tends to create its own internal taxonomy,
with species that can be well defined morphologically and
molecularly, yet are not formally named. This informal tax-
onomy is adequate for local studies but becomes problematic
when data from different studies need to be integrated into
larger, regional data sets (but see Ballesteros-Mejia et al.
2013). The use of interim taxonomic reference systems based
on DNA barcode clusters as implemented in the Barcode of
Life Database provides an approach that allows comparison

across studies and sites (Schindel & Miller 2010;
Ratnasingham & Hebert 2013). The study of beta diversity and
species turnover among communities over large geographic
areas (Novotny et al. 2007; Beck et al. 2012; Baselga et al.
2013) or periods of time (Chen et al. 2009; Grøtan et al. 2012),
and the mechanisms of community assembly from regional
species pools (Novotny et al. 2012; Stone et al. 2012), are thus
particularly poorly studied in the tropics despite the indication
from the classic temperate-zone studies that regional species
pools may be the principal determinants of local community
composition (Compton et al. 1989).

We have a great opportunity for mutual benefit among
ecology, evolution and systematics, bringing together morpho-
logical, genomic and biological data in a new era of integrative
taxonomy that is widely accessible and useful because of new
digital tools – a renaissance of taxonomy.

FROM TEMPERATE TO TROPICAL
FORESTS: INTERACTION
NETWORKS AND LATITUDINAL
TRENDS IN DIVERSITY

Why does insect diversity increase from temperate to tropical
forests? The simplicity of this question is deceptive because
the monotonic increase in species diversity towards the tropics
appears to be a complex result of evolutionary history and
contemporary ecological interactions (Mittelbach et al. 2007;
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Fig. 2. Hypothetical latitudinal trends (tropical to temperate) in herbivore species richness, steeper in specialists than generalists (A),
generated entirely by trends in vegetation composition (B), lead to decreasing host specificity along latitude (C) but only on non-
standardized vegetation (D). An alternative (E) where latitudinal trends are only partly explained by vegetation (F), leads to a latitudinal
trend in host specificity (G), only partly explained by vegetation (H). In both cases, we assume that latitudinal trends in vegetation affect
specialists more than generalists. All herbivores = specialists + generalists.
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Schemske et al. 2009; Agrawal et al. 2010). Phylogenetic
studies indicate that the tropics are both the ‘cradle’ and the
‘museum’ of species diversity, i.e. they are characterized by
both higher speciation and lower extinction rates than temper-
ate regions (McKenna & Farrell 2006; Condamine et al.
2012). These evolutionary dynamics have generated larger, but
poorly documented, regional pools of species in the tropics
than in the temperate zones.

Understanding how so many species can coexist in a tropi-
cal forest requires the study of inter-specific interactions, par-
ticularly food webs. The large numbers of herbivore and
parasitoid species in tropical relative to temperate forest com-
munities reflect differences in (1) the number of host species
(plant species for herbivores and herbivore species for
parasitoids); (2) the number of herbivore/parasitoid species per
host species, i.e. host vulnerability; and/or (3) the number of
host species per herbivore/parasitoid species, i.e. host speci-
ficity (Lewinsohn & Roslin 2008). The diversity of herbivores
and parasitoids may be maintained by their resources
(bottom-up effects) or by their natural enemies, including
predators, parasitoids and pathogens (top-down effects)
(Denno et al. 2005). While the increase in plant diversity
towards the tropics is well documented (e.g. there are 5–10
times more plant species per 10 000 km2, and six times more
woody species per hectare in tropical than temperate areas –
Novotny et al. 2006; Barthlott et al. 2007), our knowledge of
latitudinal trends in insect species richness and host specificity,
both for herbivores and parasitoids, is surprisingly poor (Stork
2007; Quicke 2012). The number of herbivore species per
plant species may be similar in tropical and temperate forests,
although we lack a rigorous analysis (Lewinsohn et al. 2005;
Novotny et al. 2006).

The evidence for latitudinal trends in host specificity is
controversial (Stork 2007). This is a problem because the role
of herbivores as density-dependent mortality agents maintain-
ing plant diversity depends on their specificity (Leigh et al.
2004). We found no difference in host specificity between
Europe and New Guinea when we compared herbivores
feeding on tropical and temperate sets of plant species with
comparable phylogenetic diversity (Novotny et al. 2006). In
contrast, Dyer et al. (2007) let the phylogenetic diversity of
their study plants vary with latitude and found increasing host
specificity towards the tropics in the Americas, i.e. in parallel
with increasing plant phylogenetic diversity from temperate to
tropical forests.

Contrasting results may reflect biological differences
between the studied systems, or different methodological
approaches. In particular, each study answers a subtly different
question, depending on whether it standardizes for the simpli-
fied vegetation in temperate compared with tropical forests. For
instance, differences in vegetation structure explained a large
part of the differences in ant diversity between primary and
secondary rainforests (Klimes et al. 2012), and the plant–insect
food web structure also changed with simplification of vegeta-
tion along a disturbance gradient (Tylianakis et al. 2007). The
apparently conflicting results between low beta diversity among
herbivore communities on conspecific plant species in New

Guinea (Novotny et al. 2007) and high beta diversity of geom-
etrid moths on non-standardized vegetation in Borneo (Beck
et al. 2012) may also reflect different analytical approaches to
insect community changes caused by vegetation.

Latitudinal trends in plant species richness, phylogenetic
diversity, abundance and biomass may, partially or even com-
pletely, explain latitudinal trends in herbivore diversity and host
specificity. The null hypothesis is that the rate of increase in
herbivore species richness merely reflects increasing diversity
of the vegetation from temperate to tropical ecosystems
(Fig. 2a) so that herbivore diversity on temperate vegetation
equals herbivore diversity on a subset of tropical vegetation
matching the temperate vegetation in species and phylogenetic
diversity (Fig. 2b). This null hypothesis assumes that herbi-
vores respond more strongly to vegetation changes than gener-
alists (Fig. 2a) so that the latitudinal trend of increasing host
specificity towards the tropics (Fig. 2c) is driven solely by
vegetation change, particularly by increasing number of rare
plant species each hosting its own specialist herbivores
(Fig. 2d). An alternative hypothesis (Dyer et al. 2007) postu-
lates latitudinal diversity gradient for specialists and generalists
(Fig. 2e,f) that may be sensitive to the standardization of veg-
etation across latitudes ( specialists are likely to be more sen-
sitive to reduced plant species richness in temperate forests than
generalists), but the standardization does not remove the host
specificity trend entirely (Fig. 2g,h). Under this hypothesis,
higher herbivore specialization in the tropics would facilitate
coexistence by partitioning niche space, thus explaining high
tropical diversity independently from latitudinal trends in plant
diversity.

The species richness of parasitoids, and their host specific-
ity, probably increases towards the tropics (Stireman et al.
2005; Smith et al. 2008; Quicke 2012). The null hypothesis is
that latitudinal change in herbivorous communities drives lati-
tudinal trends in diversity and host specificity of their
parasitoids, which would be an indication that parasitoids do
not play an important role in generating high tropical diversity
of their hosts (Fig. 3a,b). Alternately, there may be a latitudinal
trend in the number of parasitoid species per host species
even after vegetation has been standardized (Fig. 3d). This
trend may or may not disappear after the assemblage of
their herbivore hosts is standardized by subsampling the tropi-
cal herbivore community to match the number of species
and phylogenetic diversity of the temperate one (Fig. 3e).
Recently, Morris et al. (2014) found latitudinal trends in
parasitoid host specificity present in raw community data,
but absent after standardization for latitudinal trends in the
diversity of parasitoid hosts.

PLANT–INSECT FOOD WEBS:
FROM COUNTING SPECIES TO
MAPPING INTERACTIONS

The focus of insect diversity studies is gradually shifting
from surveying species to mapping inter-specific interactions,
particularly trophic interactions in food webs (Novotny &
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Basset 2005; Thompson et al. 2012). Unfortunately, docu-
menting trophic interactions is even more difficult, and
requires even larger sampling effort, than documenting
species. In more than 15 years, we have traced nearly 7000
feeding links between about 200 plants and 1500 insect her-
bivores from 11 guilds in a lowland rainforest in PNG
(Novotny et al. 2010). Unfortunately, these figures might rep-
resent only 15% of the total herbivore richness and interaction
diversity in that lowland forest since we have estimated that
there were ∼50 000 distinct trophic interactions between
∼9600 herbivorous insect species and 200 tree species in that
forest (Novotny et al. 2010).

This extraordinary complexity of tropical plant–herbivore
food webs may stimulate the development of more efficient,
particularly molecular, methods for the detection of trophic
interactions. However, the near impossibility of conducting
complete censuses in plant–insect food webs in tropical forests
(Novotny & Basset 2000) should also refocus our attention to
targeted studies of species and interactions that are both
common and functionally critical, rather than attempting to
achieve complete coverage of entire food webs.

Tropical food webs, although extremely complex, are domi-
nated by relatively few interactions (Fig. 4). For instance,
49 597 folivorous herbivores sampled from 38 tree species in
PNG represented 865 species, but 50% of all herbivore indi-
viduals belonged to the 32 (3.7%) most common species. We
documented 3260 distinct trophic interactions between par-
ticular plant and folivore species in this food web, but 50% of
all individual herbivores were involved in only the 97 (3.0%)
most frequent interactions (Novotny et al. 2012). There is thus
an obvious, but rarely considered, possibility to focus on a few
dominant interactions when analyzing complex tropical food
webs. Likewise, quantitative samples from tropical insect
communities are also dominated by a few species. For
instance, only 1–6% of the most common species comprised
50% of all individuals in extensive surveys of butterflies, ants
and moths on the Barro Colorado Island (Fig. 5). These
common species and interactions could be also used for long-
term monitoring of plant–insect dynamics in tropical forests
(Basset et al. 2013), most feasibly associated with the network

of forest dynamics plots coordinated by the Center for Tropical
Forest Science (Losos & Leigh 2004; Wolf et al. 2009).

Recently, ter Steege et al. (2013) used this approach to
estimate that although Amazonia harbours approximately
16 000 tree species, half of all individual trees belong to just
227 (1.4%) super-abundant tree species. This result suggests
that we could perhaps construct a rather simple plant–insect
food web for the entire Amazon, combining these super-
abundant tree species with the presumably rather limited range
of their common herbivore species.

In our PNG study (Novotny et al. 2012), each tree species
hosted a diverse assemblage of folivorous insects (including
adult and larval chewers, miners and mesophyll cell suckers
from four insect orders), but 50% of insect individuals feeding
on that tree recruited from only 1 to 7 (mean 3.8) species. The
total number of folivorous species as well as the number of
species comprising 50% of all individuals increased as a power
function of the number of plant species included in the food web
(Fig. 6). Extrapolation of our data from 38 tree species suggests
that the most common 95 folivorous species could include half
of all insect individuals in a food web on 227 tree species (the
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Fig. 4. Quantitative tri-trophic food web for secondary rainfor-
est vegetation in PNG comprising 37 plant species (11.1 m2 basal
area, representing 70% of basal area from 1 ha), 4803 caterpillars
from 154 species (exposed and semi-concealed guilds) and 643
parasitoids from 76 species (mostly Braconidae, Tachinidae and
Ichneumonidae) (Hrcek et al. 2013).
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number of super-abundant species from the Amazon; see
above). A rather reckless combination of our PNG folivore data
with data on Amazon trees suggests that half of all folivorous
individuals feeding on 227 super-abundant tree species, which
in turn represent half of all individual trees in the Amazon,
recruit from merely 95 insect species. In other words, a food
web including 227 tree and 95 insect species might comprise
50% of all tree individuals and 25% of the total abundance of
folivorous herbivores in the Amazon!

Even a sophisticated description of network structure is
unlikely to provide insights into the dynamics of tropical food
webs. This is one driver of the current increase in experimental
manipulation of tropical food webs, following in the footsteps
of classical experiments by Simberloff and Wilson (1969).
These include fine-scale manipulation accomplishing removal
(Morris et al. 2004) or addition (Letourneau & Dyer 1998) of
a single insect species, documenting the feasibility of respec-
tively apparent competition and trophic cascades in tropical
forest webs. Further, experiments can exclude natural enemies,
such as herbivores (Bagchi et al. 2010) or predators (Mooney
et al. 2010; Klimes et al. 2011), and/or manipulate plant (Fine
et al. 2004) or mineral (Kaspari et al. 2009) resources. Finally,
entire-ecosystem manipulation can include forest fragmenta-
tion (Ewers et al. 2011) or vegetation assembly, emulating
temperate-zone grassland experiments (Hector et al. 1999) in a
tropical forest environment (Hector et al. 2011).

The study of food webs also suffers from some culturally
ingrained gaps and biases. In particular, many studies focus
either on the species composition, specificity and abundance
of herbivores (Dyer et al. 2007; Novotny et al. 2010), or on the
damage caused by herbivores (Kursar & Coley 2003; Lamarre
et al. 2012), but surprisingly few studies manage to sample
insects and measure holes in the leaves at the same time.
Further, there are large scientific communities studying either
plant–herbivore (Novotny & Basset 2005), or herbivore–
parasitoid (Stireman et al. 2005) food webs, but very few
combining both into tri-trophic food webs (Janzen &
Hallwachs 2011), and none, as far as we are aware, including
simultaneously parasitoids and predators (but see Van Veen
et al. 2008 for a temperate food web example). Again, molecu-
lar tools provide great opportunities, as shown by recent
exploratory studies (García-Robledo et al. 2013; Joly et al.
2013; Kishimoto-Yamada et al. 2013).

TROPICAL ENTOMOLOGY IN
21ST CENTURY

The study of tropical insect ecology did not accomplish as much
in the 20th century as it might have. Tropical exploration
declined in prominence within the field of biology in the early
decades of the century, followed by a long period in which the
still immature field of molecular biology had an ambition to
dominate the field of biology without offering many useful
techniques for insect taxonomy, ecology and phylogenetic
studies (Wilson 2006). Last but not least, one of the most
publicly visible quests of tropical entomology in the last

100
s

75

100
du

al
s

75

di
vi

du
al

s

50

75

of
 in

di
vi

du
a

50

e 
%

 o

25

ul
at

iv
e

C
um

u

0
1 10 100 1000

C 0

Species abundance rank (R)
Butterflies Ants Moths

Fig. 5. Cumulative proportion of individuals represented by R
most common species in quantitative community samples of but-
terflies, ants and moths (butterflies: surveyed along 500 m
transects, S = 353 species, n = 7248 individuals; ants: Winkler
litter extractors, S = 125, n = 10 938; moths: light traps, S = 760,
n = 26 636), from a lowland tropical forest at the Barro Colorado
Island. Grey area denotes species representing 50% of all indi-
viduals in each sample, represented by respectively 4, 7 and 15
species in butterflies, ants and moths, i.e. 1–6% of all species.
Based on unpublished data from Y Basset (pers. comm. 2014).

y = 4.093x0.579

R2 = 0.995

y = 94.419x0.632

R2 = 0.990

1

10

100

1000

1 10 100 1000

No. of plant species (P)

N
o.

 o
f f

ol
iv

or
ou

s 
sp

ec
ie

s

Fig. 6. Accumulation curve for the total number of folivorous
herbivores (circles) and the number of common folivorous species
comprising 50% of all individuals (squares) with increasing
number of plant species (P). The curve for common folivorous
species is extrapolated to predict diversity for 227 tree species (see
text). Individual points represent means for P = 1 plant species
calculated from the 38 species sampled, 20 random combinations
of P = 2, 5, 10, 20 and 30 selected from the 38 tree species, and a
single data point corresponding to the entire data set of P = 38
species. Data are from Novotny et al. (2012).

6 V Novotny and S E Miller

© Published 2014. This article has been contributed to by US Government employees and
their work is in the public domain in the USA



century was its efforts to estimate global diversity of insects.
The competing estimates ranged by two orders of magnitude,
from several million to 100 million species, not inspiring much
confidence in the field of tropical insect ecology (Miller et al.
2002).

Fortunately, the situation is set to improve in the 21st
century. Insect taxonomy is entering a revolution fuelled by
molecular techniques including DNA barcoding, combined
with internet-based dissemination of information. We can
expect our catalogue of insect species, and their ecological
traits, to expand significantly in the foreseeable future, thus
providing opportunities for macro-ecological studies of insects
which are already commonplace in taxonomically better
known groups such as tropical vertebrates. Further, ecological
studies have greatly benefitted from a robust high-level phy-
logeny of flowering plants (Bremer et al. 2009) and, in the case
of birds, phylogenetic relationships resolved to the species
level (Jetz et al. 2012). The situation in major insect lineages is
much less satisfactory, but we can expect rapid progress
towards global phylogenies (e.g. Mutanen et al. 2010).

While permanent study plots have played a key role in the
study of plant diversity in tropical and temperate forests
(Hubbell 2013), similar plot-based data on insect communities
are lacking despite earlier recommendations to use plant plots
for food web studies (Godfray et al. 1999). We recommend a
focus on building a pan-tropical network of such permanent
study plots, surveyed using standardized sets of methods, and
modelled perhaps on the network of CTFS forest dynamics
plots. The CTFS network could provide botanical information
for understanding comprehensive tri-trophic food webs, as well
as community phylogenies for plants (Kress et al. 2009).
Small-scale but detailed, spatially explicit data on plant–insect
food webs could be obtained also using the existing network of
canopy cranes (Basset et al. 2003; Stork 2007) which could also
provide a basis for experimental manipulation of food webs in
forest canopies. The canopy crane network is presently rather
underutilized and its research productivity has been declining,
particularly in comparison with some other modern ecological
approaches, such as DNA barcoding (Fig. 7). However, it has a
potential for coordinated studies with global reach where indi-
vidual cranes represent replicated data points.

In conclusion, because of the combination of faster tax-
onomy, robust phylogeny of principal insect taxa, and detailed
plot-based food webs subject to experimental manipulation,
there is great promise for tropical entomology in 21st century.
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